LWSNet: A Point-Based Segmentation Network for Leaf-Wood Separation of Individual Trees

نویسندگان

چکیده

The accurate leaf-wood separation of individual trees from point clouds is an important yet challenging task. Many existing methods rely on manual features that are time-consuming and labor-intensive to distinguish between leaf wood points. However, due the complex interlocking structure leaves in canopy, these have not yielded satisfactory results. Therefore, this paper proposes end-to-end LWSNet separate points within canopy. First, we consider linear scattering distribution characteristics calculate local geometric with distinguishing properties enrich original cloud information. Then, fuse contextual information for feature enhancement select more representative through a rearrangement attention mechanism. Finally, use residual connection during decoding stage improve robustness model achieve efficient separation. proposed tested eight species different sizes. average F1 score as high 97.29%. results show method outperforms state-of-the-art previous studies, can accurately robustly species, sizes, structures. This study extends tree manner demonstrates deep-learning segmentation algorithm has great potential processing plant morphological traits.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Leaf Area Density of Individual Trees Using the Point Cloud Segmentation of Terrestrial LiDAR Data and a Voxel-Based Model

The leaf area density (LAD) within a tree canopy is very important for the understanding and modeling of photosynthetic studies of the tree. Terrestrial light detection and ranging (LiDAR) has been applied to obtain the three-dimensional structural properties of vegetation and estimate the LAD. However, there is concern about the efficiency of available approaches. Thus, the objective of this s...

متن کامل

Segmentation and Crown Parameter Extraction of Individual Trees in an Airborne Tomosar Point Cloud

The analysis of individual trees is an important field of research in the forest remote sensing community. While the current state-of-theart mostly focuses on the exploitation of optical imagery and airborne LiDAR data, modern SAR sensors have not yet met the interest of the research community in that regard. This paper describes how several critical parameters of individual deciduous trees can...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

A Classification-Segmentation Framework for the Detection of Individual Trees in Dense MMS Point Cloud Data Acquired in Urban Areas

In this paper, we present a novel framework for detecting individual trees in densely sampled 3D point cloud data acquired in urban areas. Given a 3D point cloud, the objective is to assign point-wise labels that are both class-aware and instance-aware, a task that is known as instance-level segmentation. To achieve this, our framework addresses two successive steps. The first step of our frame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forests

سال: 2023

ISSN: ['1999-4907']

DOI: https://doi.org/10.3390/f14071303